Just about a month ago, Harvard hosted the inaugural New England Symposium on Statistics in Sports (official site, news release).
In perusing the abstracts of conference papers (which can be accessed through the conference website, where it says "Program"), I came across a study (presented in poster format) entitled, "Skill Importance in BYU Women’s Volleyball: A Bayesian Approach." The authors were BYU statistics graduate student Lindsay Florence and professor Gilbert Fellingham.
The beginning of the abstract gives the basics of the study:
The BYU womens volleyball team recorded all skills (pass, serve-receive, set, etc.), rated each skill, and recorded rally outcomes (point for BYU, rally continues, point for opposition) for the entire 2006 home volleyball season. Only sequences of events occurring on BYU's side of the net were considered.
Florence and Fellingham were nice enough to e-mail me a PDF of their poster. It conveys some basic statistics in the form of two-way cross-tabulated tables, along with more complex, Bayesian analyses.
Each of the simpler, two-way tables shows the relationship between a type of skill performance and outcome of the "possession" (BYU point, continuation of rally, or loss of point). A 6 X 3 table, for example, examines six grades of setting (from "perfect set" down through "set not by setter") in relation to the three possible outcomes.
Three types of sets ("perfect," .53; "low and inside," .52; and "outside and low," .51) were associated with winning the point a little over 50% of the time. Two other types of sets ("high and outside," .47; and "inside and high," .46) were associated with winning the point at a little below a 50% rate, and if the set was not by the setter, BYU won the point only 39% of the time.
Other skills, in the domains of hitting and passing, showed similar results: As long as the task was accomplished adequately (i.e., mid to high grades), the Cougars had around a 50% chance of winning the point. But, if the task were performed well below optimally, BYU only had roughly a 40% chance of winning the point.
As shown on Fellingham's CV on his website (linked above), he has a fairly large portfolio of research that would likely be of interest to quantitatively minded volleyball fans. This includes the following article, co-authored with (now retired) BYU men's volleyball coach Carl McGown:
Fellingham, G.W., Collings, B.J., & McGown., C. (1994). Developing an optimal scoring system with a special emphasis on volleyball. Research Quarterly for Exercise and Sport, 65, 237-243.
If you'd like a copy of the Florence-Fellingham New England poster, just e-mail me via my faculty webpage (link in the upper-right).
Texas Tech professor Alan Reifman uses statistics and graphic arts to illuminate developments in U.S. collegiate and Olympic volleyball.
Subscribe to:
Post Comments (Atom)
Semi-Retirement of VolleyMetrics Blog
With all of the NCAA volleyball championships of the 2023-24 academic year having been completed -- Texas sweeping Nebraska last December t...
-
Two years ago, I created a very simple prediction equation for the NCAA women's tournament. Each team gets its own value on the predicti...
-
I was invited once again this year to vote for the Off the Block men's collegiate volleyball awards . The number of awards has increased...
-
With this year's NCAA women's Final Four getting underway Thursday night in Seattle, today's posting offers some statistical obs...
1 comment:
That 94 Fellingham paper is a hoot. If I remember right, that is the one where they propose making the match a single game to 150 or so.
Without a doubt, it is a better way to ensure the "better" team wins.
I especially like the paper because they base their calculations on point percentage, and that is what Pablo is using these days. I have even done a Pablo transformation on their data, and it works (although it darn well should)
Post a Comment